
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

The influence of finite dimensions on the static ordering of the S*C phase in
an electric field
B. Kutnjak-urbanca; B. Žekšab; B. Rovšeka

a J. Stefan Institute, Ljubljana, Slovenia b Medical Faculty, Institute of Biophysics, Ljubljana, Slovenia

To cite this Article Kutnjak-urbanc, B. , Žekš, B. and Rovšek, B.(1993) 'The influence of finite dimensions on the static
ordering of the S*C phase in an electric field', Liquid Crystals, 14: 4, 999 — 1005
To link to this Article: DOI: 10.1080/02678299308027807
URL: http://dx.doi.org/10.1080/02678299308027807

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678299308027807
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1993, VOL. 14, No. 4, 999-1005 

The influence of finite dimensions on the static ordering 
of the S z  phase in an electric field 

by B. KUTNJAK-URBANC*T, B. ZEKSTS and B. ROVSEKT 
t J. Stefan Institute, Jamova 39, 61 11 1 Ljubljana, Slovenia 

$1 Institute of Biophysics, Medical Faculty, LipiEeva 2, 61 105 Ljubljana, Slovenia 

A ferroelectric liquid-crystalline sample of a finite length along the helical axis is 
studied in an external electric field applied perpendicular to the helical axis. By 
taking into account the linear coupling to the field, the equilibrium state is found for 
the case of free boundary conditions. Just below the critical field which induces the 
transition into the homogeneous S: phase the domain-like structure appears as in 
the case of an infinite sample. The helical period in a finite sample is not a 
continuous function of the field, but it increases in finite jumps. We show that the 
finiteness of the sample has also an influence on the dielectric response at zero field. 

1. Introduction 
In the S,* phase the molecular director precesses as we proceed from one smectic 

layer to another so that the helical structure is formed with the period of about lo3 
smectic layers. An external electric or magnetic field applied perpendicular to the 
helical axis deforms the helical structure. If the field exceeds the critical value, the phase 
transition into the homogeneous S$ phase takes place. Both critical electric and critical 
magnetic field strongly depend on temperature [l-31. By excluding a narrow 
temperature region below the S,-S,* transition temperature, T,  - T< 1 K, we can 
describe the S$-Sz phase transition induced by an external field within the constant 
amplitude approximation [4,5] (CAA). 

The helical unwinding caused by an external electric field has been studied already 
for a sample of an infinite length along the helical axis [6-81. The static susceptibility 
has been shown [6] to diverge logarithmically at the critical field, which is in 
contradiction with the experimental results [9-121. 

It has been pointed out [8] that two processes contribute to the dielectric response 
in an electric field: local reorientation of the in-plane polarization and the change of the 
helical pitch which is important especially near the critical electric field. The 
fluctuations of the helical pitch which contribute to the dielectric response at a bias 
electric field are of a long wavelength, so that the corresponding frequency should be 
very low. In a dielectric experiment where the applied frequencies are higher than a few 
lo's of Hz this process cannot contribute to the dielectric response. We expect that the 
relative contribution of this process to the dielectric response is more pronounced in 
samples of a finite dimension along the helical axis. 

In the present paper the S&Sz phase transition in an electric field is considered for a 
sample of a finite length along the helical axis, taking into account the linear coupling to 
an electric field. We assume that the molecular director at both boundaries is free to 
rotate.In 8 2 the mathematical procedure is described, that leads to the equilibrium 
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1000 B. Kutnjak-Urbanc et al. 

solution in a static electric field. The results of the static solution are presented in 9 3. In 
0 4 the influence of finite lengths on the dielectric response at zero bias field is discussed 
and in the Conclusions final remarks are given. 

2. Formulation of the problem 
Consider a sample of a finite length L along the helical axis which coincides with the 

z axis. We assume that the molecular director at both boundaries, defined by z = 0 and 
by z = L, rotates freely on the smectic cone. In general a finite sample is polarized even in 
the absence of an external field in contrast to an infinite sample. The polarization 
appears whenever there is not exactly an integer number of helical periods in the 
sample. Let us denote this polarization by Po. The orientation of the polarization Po in 
the smectic plane is arbitrary in the absence of the field. Any static electric field breaks 
this axial symmetry and turns the whole sample in such a way that the total 
polarization is parallel to the field. 

The problem is studied on the basis of the Landau model [13] within the CAA. To 
describe the state of the system two order parameters are used, the tilt l which is a 
projection of the director n into the smectic plane xy, and in the in-plane polarization P. 
In the CAA only the phase Q of the tilt t is allowed to vary, so that one can express 
both order parameters in terms of their magnitudes 0 and P and the phase 0, 
5 = O(cos Q, sin Q) and P = P( -sin Q, cos 0). The part of the free energy which depends 
on the phase Q can be written [8] 

where K ,  is an elastic constant and qo is the wave vector related to the helical period p o  
at zero field, qo=2n/po. The electric field points along the y axis, E=(O,E). The 
minimization of the free energy (1) leads to the sine-Gordon equation 

EP sin Q = 0, (2) 

and to the boundary conditions 

dQ dQ 
09 - dz (z = 0)  = - dz (z = L) = q (3) 

which means that no external torque acts on the director at the boundaries. Let us 
denote by Qo the value of the phase 0 at one boundary Q(z = 0) = Qo. We can then find 
the value of the phase at the other boundary, Q(z = L) = n27c f Qo, where Qo can in 
general take any value from the interval [ - n, + n]. The integer number n and the phase 
Qo are still to be determined. At a given field E and at a given length L there is a relation 
between the integer n and the phase Qo, 

expressed by the complete K(K) and the incomplete F ( 4 ,  K )  elliptic integrals [14] of the 
first kind. The angle 4 is equal to 4 = (Qo + n)/2. The solution depends on the critical 
electric field E ,  = (7c/4)’ ( K , 0 2 q g / P )  and K = 2,/E/4(4/7c)’EC + 4E cos’ (Q0/2)] is a 
dimensionless modulus, KE[O, 13. In deriving equation (4) we take into account the first 
integral of equation (2) and the boundary conditions (see equation (3)). At several n, - s 
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Static ordering of the S,* phase 1001 

we can solve numerically equation (4) for Qoi and obtain pairs (ni, Qoi) which determine 
the state of the system. The equilibrium state is the one that minimizes the free energy 
which is, expressed explicitly in a dimensionless form, equal to 

(5)  
8 E [(n + ~ ) E ( K )  - E ( 4 ,  K)] -- (1271 - @o) -- cos Qo, F 8J(E/Ec)  

E,PZ K 71 E C  

where E ( K )  and E(4,  K )  are the complete and the incomplete elliptic integrals [14] of the 
second kind, respectively. This minimization can only be done numerically. Once we 
find the integer number n which measures the number of helical periods in the sample 
and the initial phase Qo, the solution of equation (2)  with boundary conditions (see 
equation (3)) can be expressed by the jacobian elliptic function cn 

where the constant zo is related to the initial phase Qo 

3. Results 
A static solution Q(z) of the sine-Gordon equation (2)  is presented in figure 1 for 

different values of the reduced field E / E C  The chosen length L of the sample is L = 4p0, 
where po is the helical period at zero field. As seen from the figure the initial phase 

= @(z = 0) changes with the field in such a way that the slope of the phase @ is fixed 
and equal at both boundaries. It turns out that the free energy is minimal if the phase at 
z = L is equal to @(z = L) = n271 - Qo. That means that the function @(z) - @(L/2) is an 
odd function of the coordinate z with respect to the middle of the sample, z = L/2. In 
order for the total polarization to be parallel to the field, the initial phase <Do must be 

0 Po 2 P o  3p0 & P O  
Z 

Figure 1. The static solution @(z) of the sine-Gordon equation with free boundary conditions 
on a finite interval of the length L=4p, ,  where p o  is the period of the helical structure 
at zero field. Different curves are related to different reduced fields EIE,. At higher fields 
the solution lattice is found. -, E/E,=O; ...., E / E , = 0 4 ;  ---, E/Ec=0.85; -.-.-, 
EIE, = 0.99. 
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Figure 2. The period p L  of the helix in a finite sample as a function of the reduced electric field 

L= J2p,; E/E,. Different curves correspond to different values of the length L. 
---, L=J3p0; ... ., L= 1 5 . 4 ~ ~ ;  -, L=80.7p0. 

negative, (DO€[ - n, 01. The deformation of the phase @(z) is small at lower fields. As the 
field approaches its critical value, the domain structure is formed. Within each domain 
the in-plane polarization is roughly parallel to the field. 

It is worth mentioning that a pure homogeneous S: phase, described by CD = 0, 
strictly speaking, never takes place in a finite sample, since Qt=O is not a solution of 
equation (2) with the boundary conditions (see equation (3)). 

The helical period p L  in a finite sample, defined by cD(z + p L  ) = 2n + (D(z), is in thin 
samples considerably different from the pitch of an infinite sample. The pitch p L  is 
shown in figure 2 in dependence on the reduced field E/E, .  Different curves correspond 
to different values of the length L of the sample. One can notice jumps at certain field 
values, which diminish as we proceed to higher lengths. As shown in the figure the 
period p L  at small fields changes linearly with the field, either it increases or decreases, 
whereas in an infinite sample the helical period at small fields grows quadratically with 
the field. 

4. Dielectric response at zero field 
A dielectric response at zero field is, in a finite sample, more complicated than the 

response of an infinite sample. In an infinite sample the response does not depend on 
the orientation of the measuring field in the smectic plane. In a finite sample this is no 
longer the case due to the presence of the polarization Po in zero field. The response is 
different if the measuring field is parallel or if it is perpendicular to the polarization Po. 
Here we consider only the case where the measuring field is parallel to this polarization. 
In this case the dielectric response is as shown in figure 3 where the real and the 
imaginary parts of the dielectric susceptibility are depicted in dependence on In (fly*). 
A frequency f is the frequency of the measuring field. f* = y-l K,qi is the phason 
frequency at q = O  and y is a rotational viscosity. Different curves correspond to 
different sample lengths L. The response is significant at two frequencies, atfi = z, and 
at fz = z, The contribution atfz occurs due to the phason relaxation at 4 = 0 and it is 
present also in the response of an infinite sample. The corresponding eigenmode has 
inverse relaxation time z; x y - K,q$ The contribution to the dielectric spectrum at 
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Static ordering of the S z  phase 1003 
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Figure 3. The analytical results for the real part x'/x* and the imaginary part f/x* of the 

dielectric susceptibility, plotted in units x* = P/E,,  in dependence on In (f/f*) where 
f* = y-l K,q i  and f is the frequency of the measuring field, evaluated at different lengths 
of the sample. The values of the length L for the curves are: -, L = 2 . 8 ~ ~ ;  . . . ., L = 6 . 2 ~ ~ ;  
_ _ _  , L = 8@7p0. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



1004 B. Kutnjak-Urbanc et al. 

the frequencyf, appears due to the linear response of the helical pitch to small fields and 
it is present in finite samples only. In an infinite sample the helical period responds 
quadratically to small fields, so that this mode is absent from the dielectric spectrum. 

Let us determine the relaxation time zL of the mode related to the variation of the 
helical period, which contributes to the dielectric response. The phason relaxation 
mode which causes the change of the helical period and for which the minimal energy is 
needed is the phason mode at q = qo i- q,, where q, = n/L. The corresponding inverse 
relaxation time is equal to zt ' = y - l  K,qk and it is thus inversely proportional to the 
square of the sample length L along the helical axis. This relaxation is referred to as a 
slow relaxation since the corresponding relaxation time is usually three or four orders 
of magnitude larger that the relaxation time zF of the fast mode. Although the 
relaxation time zL of this slow relaxation mode is rather low (less than about a second), 
it can be in principle detected in a dielectric experiment. 

There is some experimental evidence for the existence of the slow relaxation process 
in ferroelectric liquid crystals. Studying the dynamic response of second harmonic 
generation in a ferroelectric liquid crystalline system, Ozaki and Yoshino [ 151 have 
detected two response times, one of the order of about a second and the other one of the 
order of about a millisecond. Recently also the theoretical work has been done by 
Hornreich and Shtrikman [ 161 on the dynamic response in the helicoidal cholesteric 
phase. Two relaxations have been predicted with well separated relaxation times, 
zF/zL= The long relaxation time zL  is found to depend on the sample length 
quadratically, just as in our case. 

5. Conclusions 
A sample of a finite length along the helical axis has been considered in an external 

electric field applied perpendicular to the helical axis. The static solution has been 
found assuming free director rotation at both boundaries. Since a finite sample in 
general carries the polarization Po even in the absence of the field, the orientation of the 
helical structure in the field is nonarbitrary even if the field is very small. The total 
polarization of the sample is at any field parallel to the field and this is expressed by the 
initial phase CD, which can in equilibrium only take values from the interval [ - n, 01. In 
the equilibrium state the function @(z) - (D(L/2) is an odd function with respect to the 
middle of the sample, L/2. The two parameters, the initial phase (Do and the number of 
domains n, which at a certain field and at a certain sample length describe the state, are 
determined numerically by minimization of the free energy. The static solution is 
expressed by the jacobian elliptic function, similar as in the sample of an infinite length. 
The helical period p L  of a finite sample is found to be a noncontinuous function of the 
field. At small fields it depends linearly on the field in contrast to the helical period of an 
infinite sample. 

The finite dimension of the sample along the helical axis influences the dielectric 
response at zero field. In addition to the response at the frequencyf, = y - K,q& being 
the only response in an infinite sample, the response at the frequencyf, = y - K3(n/L), 
appears in a finite sample, corresponding to the variation of the helical period. This 
frequency is rather low, since it is inversely proportional to the square of the length of 
the sample. It is about two or three orders of magnitude lower than the phason 
relaxation frequency at q = 0, fi. The contribution of the low frequency mode to the 
dielectric response might explain contradictions between the theoretically predicted 
behaviour [6] of the static dielectric susceptibility in a bias electric field and the 
experimental results [9-121. 
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